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In this paper, we address the problem of joint downlink (DL) and uplink (UL) channel estimation for millimeter wave (mmWave)
multiple-input multiple-output (MIMO) systems. Assuming a closed-loop andmultifrequency-based channel training framework
in which pilot signals received by multiple antenna mobile stations (MSs) are coded and spread in the frequency domain via
multiple adjacent subcarriers, we propose two tensor-based semiblind receivers by capitalizing on the multilinear structure and
sparse feature of the received signal at the BS equipped with a hybrid analog-digital beamforming (HB) architecture. As a �rst
processing stage, the joint estimation of the compressed DL and UL channel matrices can be obtained in an iterative way by means
of an alternating least squares (ALS) algorithm that capitalizes on a parallel factors model for the received signals. Alternatively, for
more restricted scenarios, a closed-form solution is also proposed. From the estimated e�ective channel matrices, the users’
channel parameters such as angles of departure (AoD), angles of arrival (AoA), and path gains are then estimated in a second
processing stage by solving independent compressed sensing (CS) problems (one for each MS). In contrast to the classical
approach in the literature, in which the DL and UL channel estimation problems are usually considered as two separate problems,
our idea is to jointly estimate both the DL and UL channels as a single problem by concentratingmost of the processing burden for
channel estimation at the BS side. Simulation results demonstrate that the proposed receivers achieve a performance close to the
classical approach that is applied on DL and UL communication links separately, with the advantage of avoiding complex
computations for channel estimation at the MS side as well as dedicated feedback channels for each MS, which are attractive
features for massive MIMO systems.

1. Introduction

In recent years, millimeter wave (mmWave) massive mul-
tiple-input multiple-output (MIMO) technology has been a
subject of increasing interest in both academia and industry
for future wireless standards due to its great potential to
provide substantial gains in data rates and energy e�ciency.
However, due to the severe path loss over the mmWave
frequency bands, large antenna arrays should be deployed at
the base station (BS) and mobile stations (MSs) to provide
su�cient beamforming gain in mmWave MIMO scenarios
[1]. In this context, the implementation of fully digital

beamforming architectures becomes prohibitive due its
expensive cost, hardware constraints, and power con-
sumption of high-resolution analog-to-digital converters
(ADC) and digital-to-analog converters (DAC) per antenna
port [2, 3]. To overcome these practical limitations, hybrid
analog-digital beamforming (HB) architectures that split the
signal processing between analog and digital domains using
a reduced number of radio frequency (RF) chains (assumed
to be smaller than the number of antennas) have been in-
vestigated [4, 5]. In the HB architectures, the digital part
performs baseband processing using microprocessors, while
the analog part can be implemented at the RF domain using
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different analog approaches such as phase-shifter networks
[6], switches [3, 7], or lenses [8].

To fully benefit from the beamforming gains in
mmWave MIMO systems, an accurate channel estimation is
crucial to realize the hybrid precoding designs in which the
analog part is used to improve the signal power, while the
digital part is designed to suppress interuser interferences
[9–11]. For this purpose, several channel estimation tech-
niques such as [12–16] have been proposed. -e authors of
[12] proposed an iterative method based on the least squares
estimation (LSE) concept and sparse message passing (SMP)
algorithm. In this method, the location of nonzero entries of
the channel vector is detected through the SMP, while the
LSE is used for estimating the channel coefficients at each
iteration. Zhu et al. [13] proposed an auxiliary beam pair
design for mmWave channel estimation in which the best
auxiliary beam pair is fed back to the transmitter via a
feedback channel. -e method proposed by Ghauch et al.
[14] consists of a subspace-based approach that exploits the
channel reciprocity in time-division duplexing (TDD)
MIMO systems for hybrid precoding design. It iteratively
estimates the dominant singular modes of the channel in-
stead of the entire channel. In contrast, the works [15, 16]
explore the angular sparsity of mmWave channels and use
compressed sensing (CS) theory to estimate only the channel
parameters from which the mmWave channel can be
reconstructed. In [15], the angular spreads over the angle of
arrival (AoA) and angle of departure (AoD) are considered
in the channel modeling, while the low-rank structure of the
channel is exploited to reduce the number of samples needed
to recover the mmWave channel. Similarly, but disregarding
the angular spreads in the spatial domains, the method in
[16] uses the 2D unitary ESPRIT algorithm for spatial pa-
rameters estimation, while the path gains are estimated by
means of the LS criterion.

-e researchers [17–21] have proposed CS-based and
tensor-based channel estimators for mmWave MIMO sys-
tems, respectively. -ey assume the conventional channel
training framework, where the DL and UL channel esti-
mation problems are treated separately (as two decoupled
procedures at the MS and BS, respectively). In particular, for
frequency division duplexing (FDD) systems, where channel
estimation is usually carried at the power-limited MS side,
computational complexity plays a significant role due to the
large number of channel coefficients to be estimated. An
interesting approach to deal with this problem exploits the
poor scattering nature of the mmWave channels via CS
techniques [22, 23]. For instance, in [17, 18], the intrinsic
sparse feature of the mmWave channel is exploited and CS-
based channel estimation algorithms are formulated.
However, the adaptive algorithm proposed in [17] can be
applied to estimate the DL or UL channel separately. In [19],
a layered pilot transmission scheme is proposed to UL
channel estimation, while [20, 21] exploit the DL commu-
nication of wideband mmWave channels. -e main idea in
[21] is to divide the overall channel estimation problem into
three smaller CS subproblems via tensor-based modeling to
estimate the channel parameters (AoDs, AoAs, and delays)
with less computational complexity. -e system model is

formulated as a parallel factors (PARAFAC) decomposition
[24], and tensor-based algorithms combined with CS tools
are proposed to solve the channel estimation problem.
However, Zhou et al. [19] only considered the UL channel
estimation, while Zhou et al. and Araújo and de Almeida
[20, 21] focused on the DL case. On the other hand, Shen
et al. [25] proposed a closed-loop based training framework,
where theMSs directly feed the received pilots back to the BS
without channel estimation. -erein, a simplified approach
is adopted, in which the UL channel is modeled as an ad-
ditive white Gaussian noise (AWGN) term. Moreover, in
[25], only the DL channel could be estimated. Different from
[25], we are interested in a joint estimation of the UL and DL
channels, and a more realistic multipath channel model that
fits to mmWave MIMO scenario and HB architecture is
considered.

In this paper, we study the problem of joint DL and UL
channel estimation in the context of mmWave MIMO
systems that employ HB architectures. Initially, we propose a
novel closed-loop and multifrequency-based channel
training framework in which the pilot signals received by
multiple MSs are coded and spread in the frequency domain
and then fed back to the BS over the same UL resources.
Making use of the proposed framework for channel esti-
mation, the received closed-loop signal at the BS can be
modeled as a three-way array (i.e., a third-order tensor) that
follows a PARAFAC model. By capitalizing both on the
multidimensional and sparse structures of the received
signal, we propose two tensor-based semiblind receivers for
joint DL and UL channel estimation. -e first receiver is an
iterative solution based on the alternating least squares
(ALS) algorithm [26]. -e second is a closed-form solution
based on the least squares Khatri-Rao factorization (LS-
KRF) algorithm [27]. In the proposed receivers, we first
obtain joint estimates of the compressed DL and UL channel
matrices. -en, we exploit the sparse representation of the
DL and UL channels to individually recover the channel
parameters (AoDs, AoAs, and path gains) of each user via
CS-based techniques. -e proposed framework allows
concentrating most of the processing burden for channel
estimation at the BS side, i.e., avoiding unnecessary com-
putational overhead for channel estimation at the power-
limited MS side. Our simulation results reveal that the
proposed receivers achieve a performance close to the
classical framework that treats the estimation of DL and UL
channels as separate problems.

In summary, the main contributions of this paper can be
listed as follows:

(i) We propose a novel closed-loop and multifre-
quency-based channel training framework for
channel estimation that focuses jointly on the DL
and UL communication links. -e proposed
framework concentrates the processing burden for
joint channel estimation at the BS, avoiding pro-
cessing with high computational cost at the MS side.

(ii) We show that, by making use of the proposed
framework for channel estimation, the received
closed-loop signal can be modeled as a third-order
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tensor that follows a PARAFAC model. -en,
we formulate two tensor-based semiblind
receivers (iterative and closed-form ones) for joint
DL and UL channel estimation by capitalizing on
a tensor structure of the received closed-loop
signal.

(iii) We study the identifiability issues under which the
DL and UL channel matrices can be jointly and
uniquely estimated using the proposed receivers.
Useful lower bounds on the number of subcarriers
required to accomplish the joint channel estimation
are derived.

-e rest of this paper is structured as follows: In
Section 2, we provide as a presentation complement some
important tensor definitions, tensor algebra operations,
and a brief overview on the PARAFAC decomposition. In
Section 3, we present the proposed channel training
framework, and the system and channel models. Section 4
formulates the two proposed tensor-based semiblind re-
ceivers for joint DL and UL channel estimation. In Section
5, we analyze the identifiability conditions of the proposed
receivers. Simulation results are provided in Section 6.
Conclusions and perspectives for future work are drawn in
Section 7.

1.1. Notation and Properties. Scalars, column vectors, ma-
trices, and tensors are denoted by nonbold lowercase letters
a, bold lowercase letters a, bold uppercase letters A, and
calligraphic uppercase letters A, respectively. -e super-
scripts ·{ }T, ·{ }∗, ·{ }H, and ·{ }† denote the transpose, complex
conjugate, conjugate transpose, and pseudoinverse oper-
ations. ‖ · ‖F represents the Frobenius norm of a matrix or
tensor. -e (i, r)-th entry of A is denoted by [A]i,r. -e
operator diag(a) converts a into a diagonal matrix, while
Di(A) consists in a diagonal matrix formed by the i-th row
of A. vec(A) converts A to a vector a by stacking its col-
umns on top of each other, while unvecI×R(a) converts
a ∈ CIR to a matrix A ∈ CI×R. vecd(A) converts the di-
agonal elements of A into a vector. ∘ denotes the outer
product operator. -e Kronecker and Khatri-Rao products
are denoted by ⊗ and ◇, respectively. -e Khatri-Rao
product between the matrices A � [a1, . . . , aR] ∈ CI×R and
B � [b1, . . . , bR] ∈ CJ×R corresponds to a column-wise
Kronecker product, i.e.,

A◇B � a1 ⊗ b1, a2 ⊗ b2, . . . , aR ⊗ bR  ∈ CIJ×R
. (1)

We shall make use of the following two properties of the
Kronecker and Khatri-Rao products:

AC◇BD � (A⊗B)(C◇D), (2)

vec ABCT
  � (C◇A)vecd(B), (3)

a⊗ b � vec(b ∘ a) ∈ CIJ
, (4)

where B is assumed to be a diagonal matrix in (3). In both
cases, the matrices have compatible dimensions.

2. Tensor Preliminaries

In order to facilitate the presentation of the proposed re-
ceivers, we provide below a brief overview on some im-
portant tensor definitions and tensor algebra operations. We
also introduce the PARAFAC decomposition and its dif-
ferent representation forms.

2.1. Tensor Definitions and Basic Operations. -roughout
this paper, the definitions and operations involving tensors
are in accordance with [28, 29]. A tensor is defined here as a
multidimensional array. -e order of a tensor corresponds
to the number of dimensions. It can be seen as a general-
ization of a matrix to higher-order dimensions. For instance,
a scalar is a tensor of order 0, a vector is a tensor of order 1,
and a matrix is a tensor of order 2. An n-mode fiber of a
tensor is a vector obtained by varying the n-th index and
keeping all the other indexes fixed. Slices are two-di-
mensional sections of a tensor, obtained by fixing all but two
indices. -e operator A⊔ nB denotes the concatenation of
two matrices along the n-th mode of a tensor. -e 1 mode, 2
mode, and 3 mode unfolding matrices of the third-order
tensor X ∈ CI1×I2×I3 , denoted by [X](1) ∈ CI1×I2I3 ,
[X](2) ∈ CI2×I1I3 , and [X](3) ∈ CI3×I1I2 , are obtained by
collecting all the 1 mode, 2 mode, and 3 mode fibers to be
columns of the resulting matrices, respectively. -e n-mode
product between the tensor X and a matrix A ∈ CRn×In is
denoted by Y � X × nA, which is equivalent in a matrix
fashion to [Y](n) � A[X](n) (n � 1, 2, 3).

2.2. PARAFAC Decomposition. By definition, the PARAlell
FACtor (PARAFAC) analysis decomposition of a third-
order tensor X ∈ CI1×I2×I3 , introduced by [24], is the fac-
torization of X in a sum of R third-order rank-one tensors
each one being formed by the outer product of three
vectors. Mathematically, the PARAFAC decomposition of
X ∈ CI1×I2×I3 is given by

X � 
R

r�1
ar

(1) ∘ a(2)
r ∘ a

(3)
r , (5)

where R is the rank of the PARAFAC decomposition and is
defined as the minimum number of rank-one tensors for
whichX holds exactly.-e vector a(n)

r ∈ C
In denotes the r-th

column of the factor matrix A(n) � [a(n)
1 , . . . , a(n)

R ] ∈ CIn×R

along the n-th mode (n � 1, 2, 3).
-e PARAFAC decomposition can also be represented

in terms of the frontal slices of X as follows:

Xi3
� A(1)

Di3
A(3)

 A(2)T ∈ CI1×I2 , (6)

for i3 � 1, . . . , I3.
By using n-mode product notation, equations (5) and (6)

can be written as

X � I3,R×1A
(1)

×2A
(2)

×3A
(3)

, (7)

where I3,R denotes a third-order identity tensor of size
R × R × R. Its elements are equal to 1 when all indices are
equal and 0 elsewhere.

Wireless Communications and Mobile Computing 3
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-e 1 mode, 2 mode, and 3 mode unfolding matrices of
X admit the following factorizations with respect to the
factor matrices A(n) (n � 1, 2, 3):

[X](1) � A(1) A(3)◇A(2)
 

T
, (8)

[X](2) � A(2) A(3)◇A(1)
 

T
, (9)

[X](3) � A(3) A(2)◇A(1)
 

T
. (10)

3. System and Channel Models

In this section, we introduce the proposed closed-loop and
multifrequency channel training framework. -en, we formu-
late our DL and UL signal models. In addition, the considered
mmWave massivo MIMO channel model is also presented.

3.1. Downlink Signal Model. Consider a wireless commu-
nication system operating in the FDD mode, where a BS
equipped with NBS antennas serves simultaneously U MSs
equipped with NMS antennas. We assume that the BS em-
ploys a hybrid beamforming architecture using MRF
RF chains. Due to the different instants of time dedicated
to DL and UL communications, the beamforming
matrix associated with DL transmission is denoted
by W � WRFWBB ∈ CNBS×MRF , while the beamforming
matrix associated with UL reception is denoted by
F � FRFFBB ∈ CNBS×MRF . Note that equal beamforming ma-
trices can also be considered in the transmission and re-
ception phases without loss of generality. -e BS transmits a
length-T pilot sequence sp ∈ CT over the p-th spatial di-
rection using the beamforming vector wp ∈ CNBS

(p � 1, . . . , P and P≤MRF). -e received signal at the u-th
MS over P different directions is given by

Yu � HuWS + V(DL)
u ∈ C

NMS×T
, (11)

where Hu ∈ CNMS×NBS denotes the DL channel matrix
associated with the u-th MS,W � [w1,w2, . . . ,wP] ∈ CNBS×P

denotes the transmission beamforming matrix, S � [s1, s2,
. . . , sP]T ∈ CP×T concatenates the pilot sequences to be sent
by each transmission beam. -e matrix V(DL)

u ∈ C
NMS×T is

the additive white Gaussian noise (AWGN) term at the u-th
MS.

During the training phase, we assume identity matrices
for the digital beamforming matrices, while the analog
beamforming matrices have constant unit modulus entries
with random phases. -us, the entries ofW and F are chosen
uniformly from a unit circle scaled by a constant 1/

����
NBS


, i.e.,

[W]i,j �
1
����
NBS

 e
jϑi,j ,

[F]i,j �
1
����
NBS

 e
jφi,j ,

(12)

where ϑi,j and φi,j ∈ [− π, π] follow a uniform distribution.
Since this work deals with the channel estimation problem,

the optimum design of the beamforming matrices is not
addressed here.

3.2.Uplink SignalModel. -e pilot signal (11) received at the
u-th MS is fed back to the BS after a multifrequency coding
operation (i.e., no channel estimation is done at the MS
side). More specifically, we assume that Yu (u � 1, . . . , U) is
coded and spread in the frequency domain across K adjacent
subcarriers over which the fading channel is assumed to be
constant. -e coded signal of the u-th MS transmitted at the
k-th subcarrier can be expressed as

Yk,u � diag ck,u Yu ∈ C
NMS×T

, (13)

where ck,u ∈ CNMS denotes a known code vector associated
with the k-th subcarrier and used by u-th MS. It is worth
noting that the coding vectors used by the different MSs do
not need to be orthogonal. As will be discussed later, the
linear independence assumption is enough. In practice, this
means that these codes can be locally generated at each MS
as pseudorandom sequences, i.e., no prior signaling and
coordination between MSs is necessary [30].

In the UL communication, the BS employs Q beam-
forming vectors fq ∈ CNBS (q � 1, . . . , Q and Q≤MRF) to
receive the coded uplink pilot signals over a set ofQ different
spatial directions. -e received closed-loop signal at the BS
associated with the k-th subcarrier is then given by

Xk � FH 

U

u�1
GuYk,u + V(UL)⎛⎝ ⎞⎠

� FHGe diag ck( YT
e + FHV(UL) ∈ CQ×T

,

(14)

where Ge � [G1,G2, . . . ,GU] ∈ CNBS×UNMS denotes an ex-
tended version of the UL channel matrix that concatenates
the U UL channel matrices Gu ∈ CNBS×NMS (u � 1, . . . , U) of
all MSs, Ye � [YT

1 ,YT
2 , . . . ,YT

U] ∈ CT×UNMS denotes an ex-
tended matrix that concatenates the feedback signals sent by
all MSs, ck � [cTk,1, c

T
k,2, . . . , cTk,U]T ∈ CUNMS is an extended

code vector that contains the coding vectors of all MSs with
respect to the k-th subcarrier, and FHV(UL) represents the
filtered noise term at the output of the RF chains.

3.3. Conventional× Proposed Channel Training Framework.
-e conventional framework for channel estimation, sum-
marized in Figure 1, assumes channel reciprocity in TDD or
treat the DL and UL channel estimation as two separated
problems in FDD, i.e., solved independently at the MS and
BS, respectively. For the DL channel estimation, the BS first
sends pilot signals to all MSs. At theMS side, the DL channel
estimation can be performed bymeans of the state-of-the-art
least squares (LS), minimummean square error (MMSE), or
CS-based estimators. -en, the estimated DL channel is
reported back to the BS via dedicated UL resources [30]. To
solve the UL channel estimation problem, a pilot signal is
sent to the BS by eachMS. Finally, the UL channels of all MSs
are estimated by the BS. In practice, the DL channel esti-
mated from UL pilots under the reciprocity assumption may
not be accurate due to radio frequency distortions or a

4 Wireless Communications and Mobile Computing
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different carrier frequency such as in FDD. In addition, the
conventional framework for channel estimation may imply a
high computational complexity at the MS side, especially for
power-limited devices.

In the proposed framework, summarized in Figure 2,
no processing for channel estimation is performed at the
MSs side. In contrast to the conventional approach, the
received pilot signals at each MS are fed back to the BS
after a multifrequency coding operation across a set of
adjacent subcarriers. After this closed-loop procedure, the
joint DL and UL channel estimation can be performed at
the BS from the received signal given in (14). We can note
that the proposed framework alleviates computational
overhead due to channel estimation at the power-limited
devices, by shifting this processing burden to the BS side.
Furthermore, it also relaxes channel reciprocity as-
sumptions since the DL and UL channels can be estimated
jointly from (14).

After estimating the UL and DL channels, the BS may
report the estimated parameters (AoDs, AoAs, and path
gains) to theMS.-en, eachMS can rebuild an estimation of
the DL channel (according to procedure presented in Sec-
tion 4.5) before decoding the information data. -is ap-
proach reduces the overhead since a number of DL channel
parameters reported to the MS is much smaller with respect
to the size of the DL channel matrix in an mmWave MIMO
system.

3.4. Channel Model. In (11) and (14), we consider a general
formulation in which the DL and UL channels are com-
pletely independent. In other words, the channels do not
share any reciprocity in the angular or path gain domains.
We also assume that the UL channels are constant across the
K adjacent subcarriers used in the multifrequency coding
operation. Due to the severe path loss, mmWave channels
can be modeled by a narrow-band clustered channel model
with few Lu dominant paths between the u-thMS and the BS.
-eDL channel matrixHu ∈ CNMS×NBS associated with the u-
th MS can be written as [19]

Hu � 

Lu

l�1
αu,laMS θu,l aBS ϕu,l 

T
, (15)

where αu,l denotes the complex path gain of the u-th MS
related to the l-th path in the DL communication. -e path
gains are modeled as circular symmetric Gaussian
random variables with zero mean and unit variance.
aMS(θu,l) ∈ CNMS and aBS(ϕu,l) ∈ C

NBS are the antenna array
response vectors evaluated at the angle of arrival θu,l and
angle of departure ϕu,l uniformly distributed in the interval
[0, 2π]. -roughout this paper, we assume uniform linear
arrays (ULAs) at the BS and MSs. However, the proposed
method can be applied to arbitrary array geometries
without loss of generality. For ULA configurations with
interantennas spacing equals to d � λ/2, where λ denotes
the wavelength of the signal, the array response vectors at
the MS and BS can be formulated as

aMS θu,l  �
1

����
NMS

 1, e
jπ cos θu,l , . . . , e

jπ NMS− 1( )cos θu,l 
T
,

aBS ϕu,l  �
1
����
NBS

 1, e
jπ cos ϕu,l , . . . , e

jπ NBS− 1( )cos ϕu,l 
T
.

(16)

In matrix form, Hu can be rewritten as

Hu � AMSdiag(α)AT
BS, (17)

where α �
����������
NMSNBS/Lu


[αu,1, αu,2, . . . , αu,Lu

]T ∈ CLu de-
notes the vector that contains the Lu path gains in the DL.
-e array response matrices AMS ∈ CNMS×Lu and
ABS ∈ CNBS×Lu at the MS and BS are expressed as

AMS � aMS θu,1 , aMS θu,2 , . . . , aMS θu,Lu
  ,

ABS � aBS ϕu,1 , aBS ϕu,2 , . . . , aBS ϕu,Lu
  .

(18)

-eUL channel matrixGu ∈ CNBS×NMS from the u-th MS
to the BS can be represented in a similar way. We define Gu

as follows

Gu � ABSdiag(β)AT
MS, (19)

where ABS ∈ CNBS×Mu and AMS ∈ CNMS×Mu are now
functions of the spatial parameters in the UL, while β ������������

NMSNBS/Mu


[βu,1, βu,2, . . . , βu,Mu

]T ∈ CMu denotes the
vector that contains the Mu path gains of the UL channel.

UL channel

DL channel

Received UL pilots

Received DL pilots

UL training pilots

DL training pilots u-th MS 
DL channel estimation

BS
UL channel estimation

Estimation DL channel (Via dedicated feedback channel)

Figure 1: Conventional training framework. -e DL and UL channel estimation problems are solved independently. -e BS first transmits
pilot sequences. -en, the DL channel is estimated at the MS side. -e estimated DL channel is fed back to the BS via dedicated uplink
resources. -e UL channel is estimated at the BS side. -e text in blue refer to DL communication, while the text in red refer to UL
communication.
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4. Proposed Tensor-Based Semiblind
Receivers for Joint DL and UL
Channel Estimation

Our aim is to jointly estimate the DL and UL channel
matrices Hu and Gu of each MS (u � 1, . . . , U) by solving a
multiuser channel estimation problem at the BS. To this end,
we first rewrite the received closed-loop signal (14) using a
tensor formalism. -en, by capitalizing on its multidi-
mensional structure, we formulate two tensor-based semi-
blind receivers to initially obtain the estimates for the
compressed channel matrices. As a final step, we exploit the
sparse representation of the DL and UL channels to estimate
their parameters by decoupling the multiuser channel es-
timation problem into multiple single-user ones solved in a
parallel way via separate CS problems.

4.1. PARAFAC Modeling. According to (6) and (7), the
noiseless term in the received closed-loop signal (14) can be
interpreted as the k-th frontal slice of the following third-
order PARAFAC decomposition:

X � I3,U·NMS
×1 FHGe ×2Ye×3C ∈ C

Q×T×K
, (20)

obtained by concatenating the K signal matrices Xk 
K
k�1

associated with the different adjacent subcarriers along the
third mode of X, i.e.,

X � X1 ⊔3X2 ⊔3 . . . ⊔3XK. (21)

By analogy with (7), the following correspondence holds:

A(1)
,A(2)

,A(3)
 ⟷ FHGe,Ye,C ,

I1, I2, I3, R( ⟷ Q, T, K, UNMS( .
(22)

-e three dimensions, or modes, of X stands for the
number of receive beams, pilot sequence length, and number
of subcarriers. -e matrix F can be seen as a compression
matrix associated with the first mode of X which reduces
the size of the first mode from NBS to Q RF chains (i.e.,
number of beams). -e k-th row of the multifrequency
codingmatrixC ∈ CK×UNMS contains the code values used by
the U MSs at the k-th subcarrier, i.e.,

C � c1, c2, . . . , cK 
T ∈ CK×UNMS . (23)

Estimates of the channel parameters (AoDs, AoAs, and
path gains) that build up the channel matrices Hu 

U

u�1
and Gu 

U

u�1 can be obtained by fitting the noisy version of
X to a PARAFAC decomposition. In the following, we

formulate the first stage of the proposed receivers that
consists of estimating the factor matrices FHGe ∈ CQ×UNMS

and Ye ∈ CT×UNMS in an iterative or closed-form way. Once
the factor matrices are estimated, the second stage of the
proposed receivers is to solve U independent CS problems
that yield to channel parameter estimation of each MS, as
will be shown later.

4.2. First Stage: Bilinear Alternating Least Squares (B-ALS
Receiver). According to (8)–(10), we can obtain the fol-
lowing representations for the unfolding matrices
[X](1) ∈ CQ×TK, [X](2) ∈ CT×QK, and [X](3) ∈ CK×QT of
X in terms of its factor matrices:

[X](1) � Φ C◇Ye( 
T
, (24)

[X](2) � Ye(C◇Φ)
T
, (25)

[X](3) � C Ye◇Φ( 
T
, (26)

where we denote Φ � FHGe for the simplicity of
representation.

Since the multifrequency coding matrix C is assumed to
be known at the BS while the DL and UL channel-state
information are not available, the proposed B-ALS receiver
consists of estimating Φ and Ye in an alternating way from
[X](1) and [X](2) by optimizing, respectively, the following
two nonlinear LS problems:

Φ � argmin
Φ

[X](1) − Φ C◇Ye( 
T

�����

�����
2

F
,

Ye � argmin
Ye

[X](2) − Ye(C◇Φ)
T����
����
2
F.

(27)

-e solutions of which are given by Φ � [X](1)

[(C◇ Ye)
T]† and Ye � [X](2)[(C◇ Φ)T]†, respectively.

Each iteration of the bilinear ALS-PARAFAC algorithm
contains only two LS updating steps. At each step, one
factor matrix is updated, while the other is assumed fixed to
its value obtained in the previous step [31]. -is procedure
is repeated until the convergence of the algorithm, denoted
by

ε(i)
� [X](1) − Φ C◇ Ye 

T
������

������

2

F
, (28)

the residual error between the received signal tensor and the
reconstructed signal tensor at the i-th iteration. We declare
that the first stage has converged at the i-th iteration when

Coded DL pilots (shared uplink channel)
UL channel

DL channel

Received UL pilots

Received DL pilotsDL training pilots
feedback of the received DL pilots

Via multiple coded subcarriers

u-th MS 
Joint DL and UL

channel estimation

BS

Figure 2: Proposed closed-loop and multifrequency-based training framework. -e DL and UL channels are jointly estimated. -e BS first
transmits pilot sequences. -e MSs encode the received pilots and then feed them back to the BS. -e BS jointly estimates the DL and UL
channels. -e text in blue refer to DL communication, while the text in red refer to UL communication.
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ε(i)
− ε(i− 1)



≤ σ, (29)

where σ is a threshold. In our computational simulations, we
set σ � 10− 6. Convergence to the global minimum is always
achieved within a few iterations due to the knowledge of the
frequency spread matrix at the BS. -e proposed B-ALS
receiver is summarized in Algorithm 1.

4.3. Alternative Closed-Form Solution to the First Stage.
In contrast to the B-ALS receiver, the second proposed
receiver named LS-KRF is an alternative closed-form so-
lution that can be employed in particular cases in which
K≥UNMS. -e idea is to filter the received signal tensor X
by exploiting the knowledge of the multifrequency coding
matrix C and then solve a set of rank 1 approximation
problems.

Initially, by multiplying both sides of [X]T(3) in (26) by
the pseudoinverse of CT from the right-hand side, we obtain

Ye◇Φ � [X]
T
(3) CT

 
†

� y1 ⊗φ1, . . . , yUNMS
⊗φUNMS

  ∈ CQT×UNMS .
(30)

According to property in (4), the i-th column of (30)
(i � 1, . . . , UNMS) can be rewritten as

yi ⊗φi � vec φi ∘ yi( , (31)

which denotes the vectorization operation of the rank 1
matrix Ψi � φi ∘ yi ∈ CQ×T. By defining UiΣiVH

i as the sin-
gular value decomposition (SVD) of Ψi, estimates for
φi ∈ CQ and yi ∈ CT (i � 1, . . . , UNMS) can be obtained by
truncating the SVD of Ψi to a rank 1 approximation, i.e.,
[27]

φi �
��
σ1

√
u1,

yi �
��
σ1

√
v∗1 ,

(32)

where u1 ∈ CQ and v1 ∈ CT are the corresponding first left
and right singular vectors of Ui and Vi, respectively. σ1
denotes the largest singular value of the matrix Σi. Final
estimates for Φ and Ye are obtained by repeating this SVD
computation i � 1, . . . , UNMS times in parallel, one for each
column of (30). -e pseudocode of the LS-KRF receiver is
summarized in Algorithm 2.

4.4. Second Stage: Sparse Formulation to DL and UL Channel
Parameters Estimation. Once the matrices Φ and Ye are
estimated, the second stage of the proposed receivers
consists in estimating the channel parameters (AoDs,
AoAs, and path gains) to reconstruct the channel ma-
trices Hu and Gu related to each MS. -anks to the
knowledge of the multifrequency coding matrix C, the
estimated factor matrices are not affected by permutation
of columns ambiguity. -erefore, the first stage provides
automatic separation of the compressed users’ channels.
From Φ and Ye, the multiuser channel estimation
problem can be decoupled into U single-user ones as
formulated below.

Let us rewrite the block representation of Φ, defined as
Φ � Φ1,

Φ2, . . . , ΦU  ∈ CQ×UNMS , (33)

where
Φu � FH Gu ∈ C

Q×NMS , u � 1, . . . , U. (34)

where Gu ∈ CNBS×NMS denotes the estimated UL channel
matrix related to the u-th MS. By replacing Gu for (19), and
then vectorizing (34) according to the property in (3), we have

φu � vec Φu  � AMS◇ F
H ABS β. (35)

Using the property in (2), we straightforwardly obtain

φu � INMS
⊗FH  AMS◇ ABS β ∈ CQNMS , (36)

where INMS
denotes an identity matrix of size NMS × NMS.

-e same procedure can directly be applied in the u-th
block YT

u of the estimated factor matrix:

Ye � YT
1 , YT

2 , . . . , YT
U  ∈ CT×UNMS , (37)

where

YT
u � STWT HT

u + V(DL)T
u ∈ CT×NMS . (38)

Hu ∈ CNMS×NBS denotes the estimated DL channel matrix
defined above in (17). Similar to (36), we obtain the fol-
lowing vector formulation:

yu � INMS
⊗ STWT

  AMS◇ ABS α + v(DL)
u ∈ C

TNMS ,

(39)

where yu � vec(YT
u) and v(DL)

u � vec(V(DL)T
u ).

From (36) and (39), two independent CS problems can be
formulated to jointly estimate the parameters of the DL and
UL channels of the u-th MS. We assume that grid quanti-
zation errors are neglected, i.e., the AoDs and AoAs are drawn
from a uniform angle grid of N points contained in the set
0, 2π/N, . . . , 2π(N − 1)/N{ }, with N≫ Lu and N≫Mu.
Based on this assumption, we can obtain the following sparse
formulations for the vectors yu and φu, respectively:

yu � INMS
⊗ STWT

 ΣDα, (40)

φu � INMS
⊗ FH ΣDβ, (41)

where ΣD ∈ CNMSNBS×N2
denotes the known dictionary

matrix used to solve the sparse signal recovery problem,
defined as

ΣD � AMS ⊗ABS ∈ C
NMSNBS×N2

. (42)

-e matrices AMS ∈ CNMS×N and ABS ∈ CNBS×N that
make the dictionary are given by

AMS � aMS(0), aMS
2π
N

 , . . . , aMS
2π(N − 1)

N
  ,

ABS � aBS(0), aBS
2π
N

 , . . . , aBS
2π(N − 1)

N
  ,

(43)

Wireless Communications and Mobile Computing 7
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and contain all points of the uniform angle grid. -e left-
hand side matrices (INMS

⊗ STWT) and (INMS
⊗FH) are called

measurement matrices of the sparse problems. α ∈ CN2
and

β ∈ CN2
are sparse vectors obtained by augmenting the

vector gains α and β with zero elements, respectively.
Estimates for the parameters of the channel matrices Hu

and Gu can be obtained by applying CS algorithms in the
estimated sparse vectors (40) and (41). Many efficient al-
gorithms such as orthogonal matching pursuit (OMP) [22],
structured compressive sampling matching pursuit (S-
CoSaMP) [25], and fast iterative shrinkage-thresholding
(FISTA) [23], to name a few, can be used to solve these two
sparse signal recovery problems. In a simplified view, the
estimates for the path gains α and β correspond to nonzero
entries of the estimated sparse vectors α and β, while esti-
mation for the spatial parameters (AoDs and AoAs) are
obtained by selecting the columns of the dictionary matrix
ΣD related to the positions of the estimated path gains in the
sparse vector. In our numerical results, we adopt the OMP
algorithm to estimate the UL and DL channel parameters for
simplicity reasons, although any state-of-the-art CS-based
algorithm is equally applicable to solve problems (40) and
(41).

Remark: Compared to (36), the sparse signal recovery
problem formulated from (39) naturally incorporates the DL
noise contribution in its structure. For this reason, the
proposed closed-loop framework for channel estimation can
lead to some performance degradation in the DL channel
estimation compared to UL channel estimation. -erefore,
we can observe a trade-off between DL channel estimation
accuracy performed by the BS and reduction of the pro-
cessing cost for channel estimation at the MS side. -is
discussion is reinforced by means of numerical simulations
in Section 6.

4.5. Joint DL and UL Channel Estimation. Finally, from the
estimated channel parameters (AoDs, AoAs, and path
gains), the BS can construct the estimated DL and UL
channel matrices Hu and Gu of the u-th MS according to
relations (17) and (19) as follows:

Hu � AMSdiag(α)AT
BS, (44)

Gu � ABSdiag(β)AT
MS. (45)

As previously presented in Section 4.4, the proposed
receivers decouple the multiuser channel estimation prob-
lem into 2U single-user ones (U problems dedicated to each
communication link) that can be solved independently for
each MS. Since 2U digital processing units are available at
the BS, the second stage of the proposed receivers can be
computed in parallel. -erefore, its processing delay can be
kept constant (i.e., it does not increase with the number of
MSs), when the BS is equipped with multiple (at least 2U)
digital processing units. -e parallelized processing for the
second stage of the proposed receivers is illustrated in
Figures 3 and 4. In addition, the overall pseudocode of the
proposed two-stage tensor-based receivers for joint DL and
UL channel estimation is summarized in Algorithm 3.

5. Identifiability Issues

In this section, we examine the identifiability issues under
which the compressed DL and UL channel matrices Φ and
Ye can be jointly and uniquely recovered using the proposed
receivers.

5.1. B-ALSReceiver. Unique LS solutions for the compressed
DL and UL channel matrices Φ and Ye obtained from
(24) and (25) require that (C◇Ye)

T ∈ CUNMS×KT and

(1) Set i � 0;
Initialize randomly the factor matrix Ye(i�0);

(2) i⟵ i + 1;
(3) From [X](1), obtain a LS estimate of Φ(i):

Φ(i) � [X](1)[(C◇ Ye(i− 1))
T]†;

(4) From [X](2), obtain a LS estimate of Ye(i):
Ye(i) � [X](2)[(C◇ Φ(i))

T]†;

(5) Repeat steps 2–4 until convergence. -e convergence is achieved when |ε(i) − ε(i− 1)|≤ 10− 6, where ε(i) is the residual error
computed in the i-th iteration.

ALGORITHM 1: Pseudocode of the B-ALS receiver.

(1) Apply the unvecQ×T operator in the i-th column of (30) to obtain the rank 1 matrix Ψi ∈ CQ×T;
(2) Compute the SVD Ψi � UiΣiVH

i . -en, obtain the estimates for the i-th columns of Φ and Ye as:
φi �

��σ1
√ u1 and yi �

��σ1
√ v∗1 ,

where u1 ∈ CQ and v1 ∈ CT are the first left and right singular vectors ofUi andVi, respectively, and σ1 is the largest singular value;
(3) Repeat steps 1-2 for all columns of (30).

ALGORITHM 2: Pseudocode of the LS-KRF receiver.

8 Wireless Communications and Mobile Computing
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(C◇Φ)T ∈ CUNMS×KQ have full row rank to be right in-
vertible. Hence, the following two conditions must be
satisfied:

KT≥UNMS,

KQ≥UNMS.
(46)

Combining these conditions yields the following lower
bound on the number of subcarriers required for the
multifrequency coding at the MS:

K≥max⎛⎝Ø
UNMS

T
,
UNMS

Q ⌉⎞⎠, (47)

where Øx⌉ denotes the smallest integer number that is greater
or equal to x.

5.2. LS-KRF Receiver. -e LS-KRF receiver requires that the
following necessary and sufficient uniqueness condition be
satisfied:

A = [A1, A2, ..., AU]
estimated factor matrix

in the ALS stage

A2A1 AU

Processor #1
CS stage

Processor #2
CS stage

Processor #U
CS stage

G1 G2 GU

...

...

...

Figure 3: Illustration of the parallelized processing for the estimation of U uplink channels.-e u-th block Au of the estimated factor matrix
A is forwarded and processed for a dedicated processor.

B = [Y1
T, Y2

T,..., YU
T]

estimated factor matrix
in the ALS stage

Y2
TY1

T YU
T

Processor U + 1
CS stage

Processor U + 2
CS stage

Processor 2U
CS stage

H1 H2 HU

...

...

...

Figure 4: Illustration of the parallelized processing for the estimation of the U downlink channels.-e u-th block YT
u of the estimated factor

matrix B is forwarded and processed for a dedicated processor.

1 First Stage. estimation of the compressed channel matrices
(1.1) From the received signal tensor X in (20), obtain the estimated factor matrices Φ and Ye via B-ALS or LS-KRF described in

Algorithms 1 and 2, respectively,
(2) Second Stage. parameters estimation and channels reconstruction

(2.1) From Φ � [ Φ1,
Φ2, . . . , ΦU] and Ye � [YT

1 , YT
2 , . . . , YT

U], obtain the estimates of the channel parameters (AoDs, AoAs, and path
gains) for each MS by applying a CS recovery algorithm (e.g., OMP) to problems (40) and (41) independently

(2.2) -e BS constructs the estimated DL and UL channel matrices Hu and Gu according to (44) and (45), respectively.

ALGORITHM 3: Overall pseudocode of the proposed receivers for joint DL and UL channel estimation.

Wireless Communications and Mobile Computing 9
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K≥UNMS. (48)

Note that this condition indicates that the application of
the LS-KRF receiver requires a more restricted scenario
compared to the proposed B-ALS receiver since the number
of frequency resources (subcarriers) increases with the
number of antennas at the MSs and active MSs. On the
contrary, the LS-KRF receiver is a closed-form solution in
contrast to the iterative B-ALS receiver.

6. Simulation Results

In this section, we present a set of simulation results to
evaluate the performance of the proposed joint DL and UL
channel estimator. We compare the proposed channel
training framework with the conventional training
framework illustrated in Figure 1, where the CS-based
OMP algorithm [22] is applied at both MSs and BS to
estimate the channel parameters in a decoupled way. -e
OMP algorithm is also considered as the second stage of
our algorithm, according Section 4.4. -e MSs and the BS
employ uniform linear arrays with half-wavelength-spaced
antennas. We set NBS � 32, NMS � 16, U � 2, N � 64, and
equal signal-to-noise ratio (SNR) for the DL and UL
communications in all experiments. -e obtained results
are averaged over 1000 independent Monte Carlo runs. At
each run, the DL and UL channel matrices with Lu � 3 and
Mu � 3 paths per user and HB matrices are generated in
accordance with equations (17), (19), and (12), respectively.
-e pilot signal S is a binary phase shift keying (BPSK)
modulated matrix, and the multifrequency coding
matrix C has random coefficients following a uniform
distribution.

-e receiver’s performance is evaluated in terms of
the normalized mean square error (NMSE) measures
between the estimated and true DL and UL channel
matrices:

NMSE( H) �


U
u�1 Hu − Hu

����
����
2
F


U
u�1 Hu






2
F

,

NMSE( G) �


U
u�1 Gu − Gu






2
F


U
u�1 Gu

����
����
2
F

.

(49)

In our experiments, we evaluate the accuracy of
channel estimation in terms of the NMSE metric for
different values of signal-to-noise ratio (SNR), number of
transmission (P) and reception (Q) beams, number of
training subcarriers (K), and length of the pilot sequences
(T).

Figures 5 and 6 show the NMSE as a function of the
number of transmission (P) and reception (Q) beams for
different values of SNR, and fixed values U � 2, T � 16, and
K � 25. According Figure 6, the proposed method out-
performs the classical framework to the UL channel esti-
mation, while the DL performance is worse in all the
simulated SNR ranges as shown in Figure 5. From this
experiment, we can observe the trade-off between DL

channel estimation accuracy and computational com-
plexity. In other words, the proposed framework con-
centrates most of the processing burden for channel
estimation at the BS side, while a better performance of the
DL channel estimation comes at the expense of a high
computational cost to complex channel estimation pro-
cessing at the MS side when the conventional framework is

Number of transmission beams (P)
0 10 15 20 25 30 35

N
M

SE
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CS at MSs (SNR = 0dB)
CS at MSs (SNR = 15dB)
CS at MSs (SNR = 30dB)
Proposed method (SNR = 0dB)
Proposed method (SNR = 15dB)
Proposed method (SNR = 30dB)

5

Figure 5: NMSE vs. number of transmission beams P for the DL
channel estimation: U � 2, T � 16, and K � 25.

CS at BS (SNR = 0dB)
CS at BS (SNR = 15dB)
CS at BS (SNR = 30 dB)
Proposed method (SNR = 0dB)
Proposed method (SNR = 15dB)
Proposed method (SNR = 30dB)
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Figure 6: NMSE vs. number of reception beams Q for the UL
channel estimation: U � 2, T � 16, and K � 25.

10 Wireless Communications and Mobile Computing

 6302, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/4858137 by C

A
PE

S, W
iley O

nline L
ibrary on [02/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



utilized. On the contrary, the performance loss at DL is
compensated with more accurate estimations at UL. In
addition, the NMSE performance is not influenced by the
number of RF chains when P and Q are greater than 12.
-is result reveals that the proposed framework provides a
good channel estimation accuracy even when the BS is
equipped with a few number of RF chains, which is the case
in HB architectures.

In Figures 7 and 8, the NMSE performance is evaluated
as a function of the number of subcarriers (K). An increase of
K leads to an improved performance only until K � 32
subcarriers in the DL channel estimation, while for the UL
channel estimation this value is approximately equal to
K � 64 subcarriers. -is result shows that the proposed
closed-loop channel training framework can operate with

Proposed method (SNR = 0dB, P = 8)
Proposed method (SNR = 0, P = 12)
Proposed method (SNR = 15dB, P = 8)
Proposed method (SNR = 15dB, P = 12)
Proposed method (SNR = 30dB, P = 8 )
Proposed method (SNR = 30dB, P = 12)
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Figure 7: NMSE vs. number of subcarriers K for the DL channel
estimation: U � 2 and T � 16.

CS at MSs (SNR = 0dB)
CS at MSs (SNR = 15dB)
CS at MSs (SNR = 30dB)
Proposed method (SNR = 0dB)
Proposed method (SNR = 15dB)
Proposed method (SNR = 30dB)
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Figure 9: NMSE vs. length of the training sequence T for the DL
channel estimation: U � 2, P � 8, and K � 25.
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Proposed method (SNR = 15dB, P = 8)
Proposed method (SNR = 15dB, P = 12)
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Figure 8: NMSE vs. number of subcarriers K for the UL channel
estimation: U � 2 and T � 16.
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Figure 10: NMSE vs. length of the training sequence T for the UL
channel estimation: U � 2, P � 8, and K � 25.
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few frequency resources to jointly estimate the MS channels
with high accuracy.

Figures 9 and 10 depict the NMSE performance in terms
of the length of the pilot sequence (T). In this experiment, we
also set U � 2, P � 8, and K � 25. Here, we conclude that
short pilot sequences are necessary to estimate the DL and
UL channels from the proposed method. Low variability in
the NMSE values is observed when T> 15. For a massive
MIMO scenario, this result implies in a substantial reduction
in the pilot overhead to joint DL and UL channel estimation.

7. Conclusion and Perspectives

In this paper, we have addressed the joint DL and UL
channel estimation problem for multiuser FDD massive
MIMO systems with HB architecture. As contributions of
this work, we firstly proposed a novel closed-loop and
multifrequency-based channel training framework that
concentrates most of the processing burden for channel
estimation at the BS side. We have shown that making use of
the proposed framework, the received closed-loop signal
follows a third-order PARAFAC model, which can be
exploited by two tensor-based semiblind receivers followed
by compressed sensing recovery of the channel parameters.
Additionally, we have also provided an identifiability study.
We have compared our proposed approach with the con-
ventional channel training framework, where the DL and UL
channel estimation problems are treated as two decoupled
problems, i.e., solved by the MSs and BS, separately.
Compared to the conventional framework, the proposed
receivers have shown a superior performance in the esti-
mation of the UL channel, while the performance of the DL
channel estimation exhibits some degradation. It is worth
noting that such a degradation is the price to pay for the
complexity reduction at the MS by transferring the pro-
cessing burden associated with the DL channel estimation to
the BS. Perspectives include the extension of the proposed
modeling to frequency- and time-selective channels.
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